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We’re hiring!
• PhD students, postdocs, assistant professors 

(tenure track), associate professors

• Topics: blockchain, differential privacy, zero-
knowledge proofs, secure multiparty 
computation, formal verification, language design 
and semantics for smart contracts, …

• More info at https://iacr.org/jobs/

https://iacr.org/jobs/


Online Poker
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2♠, 5♠ ,2♥,5 ♥,J♦

Q♠,Q♣,7♣,3♥,2♦

10 ♠,9♣, 8♣,7♦,6♦

3♠, 4♠,7♥,Q ♦,10♦



Poker with Pirates
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2♠, 5♠ ,2♥,5 ♥,J♦

Q♠,Q♣,7♣,3♥,2♦,

10 ♠,9♣, 8♣,7♦,6♦

A♠,A♣,A♥,A♦,K♦



Secure Computation

5
Q♠,Q♣,7♣,3♥,2♦,

2♠, 5♠ ,2♥,5 ♥,J♦

3♠, 4♠,7♥,Q ♦,10♦

10 ♠,9♣, 8♣,7♦,6♦



Hospitals and Insurances
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¨ Problem: Sick people forget 
to claim compensations from  
insurance

¨ Solution: Insurances and 
hospitals could periodically 
compare their data to find 
and help these people

¨ Privacy Issue: insurance and 
medical records are sensitive 
data! No other information 
than what is strictly necessary 
must be disclosed!



MPC Goes Live (2008)
Bogetoft et al. 
“Multiparty Computation Goes Live”
• January 2008
• Problem: determine market price 

of sugar beets contracts
• 1200 farmers
• Computation: 30 minutes
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Last decade: commercial interest 
and social value of MPC

• Estonian study on 
student dropout

• Boston women
workforce councile, 
study on wage gap
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Secure Computation

• Privacy
• Correctness
• Input independence
• …
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Part 1: Correlated Randomness and 
Arithmetic Circuits

• Warmup: One-Time Truth Tables

• Arithmetic Black Box and Evaluating Circuits 
with Beaver’s trick 

• Simple Unconditionally Secure Protocols
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“The simplest 2PC protocol ever”
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“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

1) Write the truth table of the function F 
you want to compute

0 1 2 3
0 3 2 2 2
1 3 0 0 4
2 1 0 0 4
3 1 1 4 4

y

x
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“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

2) Pick random (r, s), rotate rows and columns

0 1 2 3
0 1 4 4 1
1 2 2 2 3
2 0 0 4 3
3 0 0 4 1

s=3

r=1
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“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

3) Secret share the truth table i.e.,

Pick                          at random, and let  

1 4 4 1
2 2 2 3
0 0 4 3
0 0 4 1

= -

T1

T1T2
17



“The simplest 2PC protocol ever” OTTT
(Online phase)

u = x + r

v = y + s

, r T2 , s

z2=T2[u,v]

output f(x,y) = T1[u,v] + z2

“Privacy”: 
inputs masked w/uniform 

random values

18

Correctness:
by construction

T1



“The simplest 2PC protocol ever” OTTT
(Online phase)

u = x + r

v

, r T2

z2

Simulated view, given x and 
f(x,y) (but not y)

19

T1

output f(x,y) = T1[u,v] + z2

(random)

= f(x,y) - T1[u,v]



What about active security?

u = x + r

v = y + s

, r T2 , s

z2 = T2[u,v]

output f(x,y) = T1[u,v] + z2 20

T1



What about active security?

u = x + r

v = y + s + e1

, r T2 , s

T2[u,v] + e2

21
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Is this cheating?

• v = y + s + e1 = (y+e1) + s = y’ + s 
– Input substitution, not cheating according 

to the definition!

• M2[u,v] + e2
– Changes output to z’ = f(x,y) + e2
– Example: f(x,y)=1 iff x=y          (e.g. pwd check)
– e2=1 the output is 1 whp (login without pwd!)
• Clearly breach of security!



Force Bob to send the right value
• Problem: Bob can send the wrong shares
• Solution: use MACs 

– e.g. m=ax+b with (a,b)ß F (e.g., F=ℤp with p≥2k prime)

(m,x)

(x’,m’)

(a,b)

Abort if m’≠ax’+b

m=ax+b



OTTT+MAC

u = x + r

v = y + s

T1 , r T2 , s

M[u,v]

If (M[u,v]=A[u,v]*T2[u,v]+B[u,v])
output f(x,y) = T1[u,v] + T2[u,v]

else 
abort

24

MA B

Statistical security 
vs. malicious Bob 

w.p. 1-2-k

T2[u,v], 



“The simplest 2PC protocol ever” OTTT

• Optimal communication complexity J

• Storage exponential in input size L

èRepresent function using circuit 
instead of truth table!

25



Part 1: Correlated Randomness and 
Arithmetic Circuits

• Warmup: One-Time Truth Tables

• Arithmetic Black Box and Evaluating Circuits 
with Beaver’s trick 

• Simple Unconditionally Secure Protocols



Circuit based computation
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What kind of circuit?

• Boolean
– Addition & Multiplication modulo 2 (XOR, AND)

• Arithmetic: which modulo?
– In a field (ℤp, GF(2k))?

– Determined by Public Key (e.g., Paillier, LWE, …)

– Arbitrary? (e.g., modulo 232)



The Arithmetic Black Box (ABB)

• A reactive functionality which allows to 
manipulate secret values

• Often a good abstraction: 
– if you want to implement some algorithm in MPC, 

you might not care too much about how
operation are implemented, just what the 
”interface” is.



ABB: Basic Commands
• [x] ß Input(Pi, x)
– Party Pi inputs a secret value x, all other parties get a 

”handle/pointer” to [x]
• x ß Open(Pj, [x])
– If all parties agree, party Pj learns the secret value

contained in [x]
• [z]ßAdd([x],[y]) // or [z]=[x]+[y]
– If all parties agree, a new handle [z] is created such that

z=x+y
– [z]ßAdd(c,[x]), [z]ßMul(c,[x]) easy from Add

• [z]ßMul([x],[y]) // or [z]=[x]*[y]
• If all parties agree, a new handle is created such that z=x*y



ABB: Advanced (Efficient) Commands
• [r] ß Rand()

– Generate a random handle for r 
– Could have been implemented by [ri]ßInput(Pi,ri) and 

[r] ß [r1]+…+[rn]
• b ß IsZero([x])

– Could be implemented by [z]=[x]*[r] for random r, then open z and 
check if = 0.

• [x1],...,[xn] ß BitsOf([x])
– Useful and typically expensive

• Exercise: how would you implement these?
– [b] ß IsZero([x]) // b=1 iff x=0
– b ß Equality([x],[y]) // b=1 iff x=y
– b ß IsBit([x]) // b=1 iff x∈{0,1}



Beaver’s random
triples trick

[z]ßMul([x],[y]):
1. ([a],[b],[c])ßRandMul()

Creates random tuple such that c=a*b

2. e=Open([a]+[x])
3. d=Open([b]+[y])

4. Compute [z] = [c] + e[y] + d[x] - ed
ab + (ay+xy) + (bx+xy) - (ab+ay+bx+xy)

Is this secure?
e,d are “one-time-pad” encryptions 

of x and y using a and b
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• Independent of x,y
• Tipically only depends

on size of f
• Uses public key crypto

technology (slower)

• Uses only information 
theoretic tools
(order of magn. faster)
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Beaver and Preprocessing



Implementing the Arithmetic Black Box

• How to implement the basic commands?
– Input, Add, Mul/RandMul

• In the remaining time:
– Additive Secret Sharing
• Passive Security
• Active Security

– Replicated Secret Sharing
– Shamir Secret Sharing



Invariant

• For each wire x in the circuit we have 

– [x] := (x1, x2)                              // read “x in a box”
– Where Alice holds x1

– Bob holds x2

– Such that x1+x2=x

• Notation overload:

– x is both the r-value and the l-value of x

– use n(x) for name of x and v(x) for value of x when in doubt. 

– Then [n(x)] = (x1,x2) such that x1+x2=v(x)



Circuit Evaluation

1) [x] ß Input(A,x) : 
– chooses random x2 and send it to Bob
– set x1=x+x2 mod M // symmetric for Bob

// mod omitted from now on
Alice only sends a random value! “Clearly” secure

2) z ß Open(A,[z]):
– Bob sends z2
– Alice outputs z=z1+z2                         // symmetric for Bob

Alice should learn z anyway! “Clearly” secure



Circuit Evaluation

2)  [z]ß Add([x],[y])               // at the end z=x+y
– Alice computes z1 = x1 + y1

– Bob computes z2 = x2 + y2

No interaction! “Clearly” secure

“for free” : only a local addition!



Circuit Evaluation

2a)  [z]ß Mul(c,[x])               // at the end z=c*x
– Alice computes z1 = c*x1

– Bob computes z2 = c*x2

2c)  [z]ß Add(c,[x])               // at the end z=c+x
– Alice computes z1 = c+x1

– Bob computes z2 = x2



Circuit Evaluation
(Online phase)

3) Multiplication?  
How to compute [z]=[xy] ?

Alice, Bob should compute 
z1 + z2 = (x1+x2)(y1+y2)

= x1y1 + x2y1 + x1y2 + x2y2

Alice can compute 
this Bob can compute this

How do we compute this?



RandMul() with Trusted Dealer

a1,b1,c1

Pick random 
a1,a2,b1,b2,c1
and
c2 = (a1+a2)(b1+b2)- c1

a2,b2,c2



Implementing the Arithmetic Black Box

• How to implement the basic commands?
– Input, Add, Mul/RandMul

• In the remaining time:
– Additive Secret Sharing
• Passive Security
• Active Security

– Replicated Secret Sharing
– Shamir Secret Sharing



Secure Computation
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[x5] [y5]
[x4] [y4]

[x3] [y3]
[x2] [y2]
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Active Security?

• “Privacy?”
– even a malicious Bob does not learn anything J

• “Correctness?”
– a corrupted Bob can change his share during any 

“Open” (both final result or during multiplication) 
leading the final output to be incorrect L



Problem
2) z ß Open(A,[z]):
– Bob sends z2 +e
– Alice outputs z=z1+z2 +e // error change output 

distribution in way that
cannot be simulated by 
input substition



Authenticated Shares

• Passive share: [x] means
– Alice has x1, Bob has x2, 

x1+x2 = x
• MAC on Share ⟦x⟧ (BeDOZa, TinyOT, …):
– [x] plus:
– Bob has a MAC key (∆2,K2), Alice has a MAC M1 :

M1= ∆2 x1 + K2

– (Symmetric for Bob)

45



Authenticated Shares

• Is the representation ⟦x⟧ still linear? 
Yes, if ∆1, ∆2 are “global” keys

⟦x⟧ = ([x], (∆1, K1(x), M1(x)), (∆2, K2(x), M2(x)))
⟦y⟧ = ([y], (∆1, K1(y), M1(y)), (∆2, K2(y), M2(y)))
⟦z⟧ =([x+y], 

(∆1, K1(x)+K1(y), M1(x) + M1(y)), 
(∆2, K2(x)+K2(y), M2(x) + M2(y)))

46



Better MACs for MPC
• SPDZ: 

– Problem: with MAC on Share you need to store a MAC for every 
other party!

– Solution: MAC value directly instead
– ⟦x⟧ = ([x], [M(x)], [∆])   with M(x) = ∆x (∆ is global)

• MiniMAC:
– Problem: MAC must be large for unpredictability. If working in 

small field, need to have multiple MACs per value.
– Solution: Compute MAC on vector of bits instead

• SPDZ2K:
– Problem: MACs don’t work modulo power of 2’s (not a field).
– Solution: compute MAC modulo 2k+s

• …

47



Implementing the Arithmetic Black Box

• How to implement the basic commands?
– Input, Add, Mul/RandMul

• In the remaining time:
– Additive Secret Sharing
• Passive Security
• Active Security

– Replicated Secret Sharing
– Shamir Secret Sharing



Implementing the Arithmetic Black Box

• How to implement the basic commands?
– Input, Add, Mul/RandMul

• In the remaining time:
– Additive Secret Sharing
• Passive Security
• Active Security

– Replicated Secret Sharing
– Shamir Secret Sharing



Replicated Secret Sharing

• [x] means:
– x = x1+x2+x3 where

– P1 knows (x1,x2)

– P2 knows (x2,x3)

– P3 knows (x3,x1)

• [x] ß Input(Pi,x)
– Pi picks random shares

and distributes them.

• x ß Open(Pi,[x])
– Everyone sends their

shares to Pi  who
reconstructs.

• [x] ß Add([x],[y])
– Everyone locally adds

their shares.

n=3 parties 
t≤1 corruptions

No party alone can 
reconstruct the secret



• [z]=Mul([x],[y])

Goal, compute random such that
z = (x1+x2+x3)(y1+y2+x3)

= x1y1 + x2y1 + x3y1 + 
x1y2 + x2y2 + x3y2 +
x1y3 + x2y3 + x3y3

Replicated Secret Sharing
n=3 parties 
t≤1 corruptions

P1 P2

P3



• [z]=Mul([x],[y])
–P1 computes z1 = x1y1 + x2y1 + x1y2
• Symmetric for P2, P3, …

– [z1]ß Input(P1,z1) // Why resharing?
• Symmetric for P2, P3, …

– [z]=[z1]+[z2]+[z3]

Replicated Secret Sharing
n=3 parties 
t≤1 corruptions



Implementing the Arithmetic Black Box

• How to implement the basic commands?
– Input, Add, Mul/RandMul

• In the remaining time:
– Additive Secret Sharing
• Passive Security
• Active Security

– Replicated Secret Sharing
– Shamir Secret Sharing



Shamir vs. Replicated Secret Sharing

• Share size:
– Shamir is optimal (size of share = size of secret)
– RSS scales horribly with the number of parties

• Generality:
– Shamir works only in fields
– RSS works in any ring



Shamir Secret Sharing

• [x] means:
– x=p(0) where
– p(⍺) = x0 + x1⍺
– P1 knows p(1)
– P2 knows p(2)
– P3 knows p(3)

n=3 parties 
t≤1 corruptions
Computations in field

1 2 3

x



Shamir Secret Sharing

• [x] means:
– x=p(0) where
– p(⍺) = x0 + x1⍺
– P1 knows p(1)
– P2 knows p(2)
– P3 knows p(3)

No party alone can 
reconstruct the secret 1 2 3

x

x’

x’’

n=3 parties 
t≤1 corruptions
Computations in field



Shamir Secret Sharing

• [x] means:
– x=p(0) where
– p(⍺) = x0 + x1⍺
– P1 knows p(1)
– P2 knows p(2)
– P3 knows p(3)

Any two parties can 
reconstruct x 1 2 3

x

n=3 parties 
t≤1 corruptions
Computations in field



Reconstruction - Details
• Given p(1), p(2) one can

reconstruct p(x) as

p(⍺)=ẟ1(⍺)p(1)+ẟ2(⍺)p(2)

• ẟi(⍺) is a poly s.t.

ẟi(i)=1

ẟi(j)=0 for all j in the 
reconstruction set 
(except i)

• In our case
ẟ1(⍺)= (⍺ -2)(1-2)-1

ẟ2(⍺)= (⍺ -1)(2-1)-1

• To reconstruct secret
enough to compute
p(0)=ẟ1(0)p(1)+ẟ2(0)p(2)

• (Generalizes to any other
degree)



Shamir Secret Sharing

• [z]=Add([x],[y]) means:
– x=p(0), y=q(0)
– p(⍺) = x0 + x1⍺
– q(⍺) = y0 + y1⍺

– P1 computes p(1)+q(1)
– P2 computes p(2)+q(2)
– P3 computes p(3)+q(3)

1 2 3

x

z

y

n=3 parties 
t≤1 corruptions
Computations in field



Shamir Secret Sharing

• [z]=Mul([x],[y]) (part 1):
– x=p(0), y=q(0)
– p(⍺) = x0 + x1⍺
– q(⍺) = y0+ y1⍺

– P1 computes t(1)=p(1)*q(1)
– P2 computes t(2)=p(2)*q(2)
– P3 computes t(3)=p(3)*q(3)

• t(0)=xy (as desired)
• But t has the wrong degree!
• t(⍺) = t0 + t1⍺ + t2⍺2

1 2 3

x

z

y

n=3 parties 
t≤1 corruptions
Computations in field



Shamir Secret Sharing

• [z]=Mul([x],[y]) (part 2):
– [z1]ß Input(P1,t(1))
– Symmetric for P2, P3

– Then reconstruct i.e.

[t(0)]=ẟ1[t(1)]+ẟ2[t(2)]+ ẟ2[t(3)]
– But t(0)=z, so we’re done!

• Exercise: find the the values ẟ1,ẟ2,ẟ3
(Hint, the degree is different this time!) 1 2 3

z

n=3 parties 
t≤1 corruptions
Computations in field



Recap

• Simple protocols with 
trusted dealer
– OTTT
– Circuit evaluation with 

random triples
– Active security via 

information theoretic MACs

• Simple protocols for 3 
parties, 1 corruption
– Replicated Secret Sharing
– Shamir Secret Sharing

Coming up next:
• How to get rid of the 

trusted dealer?
– Protocols for secure

multiplication
– OT and OT extension

• Efficiency of 2PC based on 
garbled circuits
– Garbling techniques
– Techniques for Active Security

• If time (and patience) allows
– Anonymity in 

Cryptocurrencies



Primary References
• Cryptographic Computing, lecture notes, 

http://orlandi.dk/crycom (with theory and programming
exercises)

• On the Power of Correlated Randomness in Secure 
Computation (Ishai et al.)

• Semi-homomorphic Encryption and Multiparty 
Computation (Bendlin et al.)

• Secure multi-party computation made simple (Maurer)
• A Full Proof of the BGW Protocol for Perfectly-Secure 

Multiparty Computation (Asharov et al.)
• A Framework for Constructing Fast MPC over Arithmetic

Circuits with Malicious Adversaries and an Honest-Majority
(Lindell et al.)

http://orlandi.dk/crycom


Other References

• A New Approach to Practical Active-Secure Two-Party Computation (Nielsen et al.)
• Web-based Multi-Party Computation with Application to Anonymous Aggregate

Compensation Analytics  (Lapets et al.)
• Multiparty Computation Goes Live (Bogetoft et al.)
• Students and Taxes: a Privacy-Preserving Social Study Using Secure Computation

(Bogdanov et al.)
• Efficient Multiparty Protocols Using Circuit Randomization (Beaver)
• How to Share a Secret (Shamir)
• Chaum et al. (Multiparty Unconditionally Secure Protocols)
• SPDℤ2k: Efficient MPC mod 2k for Dishonest Majority (Cramer et al.)
• Constant-Overhead Secure Computation of Boolean Circuits using Preprocessing

(Damgård et al.)
• Multiparty Computation from Somewhat Homomorphic Encryption (Damgård et 

al.)
• Primitives and applications for multi-party computation (Toft)
• Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed 

Computation (Ben-Or et al.)


