**ECRYPT.NET Cloud Summer School** 

# N2 ti-Party Computation Part 1

Claudio Orlandi, Aarhus University

# Plan for the next 3 hours...

#### • Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver's trick
- MAC-then-Compute for Active Security

#### • Part 2: Oblivious Transfer

- OT: Definitions and Applications
- Passive Secure OT Extension
- OT Protocols from DDH (Naor-Pinkas/PVW)

#### • Part 3: Garbled Circuits

- GC: Definitions and Applications
- Garbling gate-by-gate: Basic and optimizations
- Active security 101: simple-cut-and choose, dual-execution

#### Want more?

- Cryptographic Computing Foundations
  - <u>http://orlandi.dk/crycom</u>
  - Programming & Theory Exercises
  - Will be happy to answer questions by mail!

...also the reason why I cannot stay here longer 😕

These slides (+ references & pointers)
 <u>http://orlandi.dk/ecrypt</u>

# Secure Computation





f(x,y)





Y



- Privacy
- Correctness
- Input independence

. .

# What kind of Secure Computation?

- Dishonest majority
  - The adversary can corrupt up to n-1 participants (n=2).

#### • Static Corruptions

- The adversary chooses which party is corrupted before the protocol starts.
- Passive & Active Corruptions
  - Adversary follows the protocol vs. (aka semi-honest, honest-but-curious)
  - Adversary can behave arbitrarily (aka *malicious, byzantine*)
- No guarantees of fairness or termination
  - Security with abort



# $(r_A, r_B) \leftarrow D$ $(r_A, r_B) \leftarrow D$ $(r_B)$

f(x,y)

**Trusted Party** 

**Trusted Dealer** 

6

# **Online Phase**

# Preprocessing



- Independent of *x,y*
- Tipically only depends on *size of f*
- Uses public key crypto technology (slower)

 Uses only information theoretic tools (order of magn. faster)

#### Part 1: Secure Computation with a Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver's trick

• MAC-then-Compute for Active Security

# "The simplest 2PC protocol ever"



f(x,y)

# "The simplest 2PC protocol ever" OTTT (Preprocessing phase)

1) Write the truth table of the function F you want to compute





10

# "The simplest 2PC protocol ever" OTTT (Preprocessing phase) 2) Pick random (r, s), rotate rows and columns



11

# "The simplest 2PC protocol ever" OTTT (Preprocessing phase)

3) Secret share the truth table i.e.,



#### at random, and let











#### What about active security?



#### Is this cheating?

•  $v = y + s + e^{1} = (y+e^{1}) + s = y' + s$ 

 Input substitution, not cheating according to the definition!

- M2[u,v] + e2
  - Changes output to  $z' = f(x,y) + e^2$
  - Example: f(x,y)=1 iff x=y
- (e.g. pwd check)
- e2=1 the output is 1 whp

(login without pwd!)

• Clearly breach of security!

#### Force Bob to send the right value

- **Problem:** Bob can send the wrong shares
- Solution: use MACs
  - e.g. m=ax+b with  $(a,b) \leftarrow F$



#### Abort if m'≠ax'+b

#### OTTT+MAC



#### "The simplest 2PC protocol ever" OTTT

Optimal communication complexity <sup>©</sup>

Storage exponential in input size ⊗

# Represent function using circuit instead of truth table!

#### Part 1: Secure Computation with a Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver's trick

• MAC-then-Compute for Active Security

#### Circuit based computation



## Invariant

- For each *wire x* in the circuit we have
  - $[x] := (x_A, x_B)$
  - Where Alice holds x<sub>A</sub>
  - Bob holds x<sub>B</sub>
  - Such that  $x_A + x_B = x$

- Notation overload:
  - x is both the r-value and the l-value of x
  - use n(x) for name of x and v(x) for value of x when in doubt.
  - Then  $[n(x)] = (x_A, x_B)$  such that  $x_A + x_B = v(x)$

// read "x in a box"





#### 1) $[x] \leftarrow Input(A,x)$ :

- chooses random x<sub>B</sub> and send it to Bob
- set x<sub>A</sub>=x+x<sub>B</sub>

// symmetric for Bob

Alice only sends a random bit! "Clearly" secure

#### 2) $z \leftarrow Open(A,[z]): // z \leftarrow Open([z])$ if both get output – Bob sends $z_B$

Alice outputs z=z<sub>A</sub>+z<sub>B</sub> // symmetric for Bob

Alice should learn z anyway! "Clearly" secure





2) [z] ← Add([x],[y]) // at the end z=x+y

- Alice computes  $z_A = x_A + y_A$
- Bob computes  $z_B = x_B + y_B$
- We write [z] = [x] + [y]

No interaction! "Clearly" secure

```
"for free" : only a local addition!
```





#### 2a) $[z] \leftarrow Mul(a, [x])$ // at the end $z=a^*x$

- Alice computes  $z_A = a^* x_A$
- Bob computes  $z_B = a^* x_B$

#### 2c) $[z] \leftarrow Add(a,[x])$ // at the end z=a+x

- Alice computes  $z_A = a + x_A$
- Bob computes  $z_B = x_B$





#### 3) Multiplication?

How to compute [z]=[xy] ?







#### 3) [z]←Mul([x],[y]):

1. Get [a],[b],[c] with c=ab from trusted dealer



- 2. e=Open([a]+[x])
- 3. d=Open([b]+[y])

Is this secure? e,d are "one-time-pad" encryptions of x and y using a and b

4. Compute [z] = [c] + e[y] + d[x] - edab + (ay+xy) + (bx+xy) - (ab+ay+bx+xy)

#### Part 1: Secure Computation with a Trusted Dealer

• Warmup: One-Time Truth Tables

• Evaluating Circuits with Beaver's trick

• MAC-then-Compute for Active Security

#### **Secure Computation**



### **Active Security?**

"Privacy?"

– even a malicious Bob does not learn anything 🙂

#### "Correctness?"

 a corrupted Bob can change his share during any "Open" (both final result or during multiplication) leading the final output to be incorrect 😕

# Problem

#### 2) z ← Open(A,[z]):

- Bob sends z<sub>B</sub> +e
- Alice outputs  $z=z_A+z_B+e$

// error change output
 distribution in way that
 cannot be simulated by
 input substition

#### Solution: add MACs

#### 2) z ← Open(A,[z]):

- Bob sends z<sub>B</sub>, m<sub>B</sub>
- Alice outputs
  - $z=z_A+z_B$  if  $m_B = z_B \Delta_A + k_A$
  - "abort" otherwise
- Solution: Enhance representation [x]
  - $[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B))$  s.t.
  - $m_B = x_B \Delta_A + k_A$  (symmetric for  $m_A$ )
  - $-\Delta_{A,}\Delta_{B}$  is the same for all wires.

#### Linear representation

- Given
  - $[x] = ((x_A, k_{Ax}, m_{Ax}), (y_B, k_{Bx}, m_{Bx}))$  $- [y] = ((y_A, k_{Ay}, m_{Ay}), (y_B, k_{By}, m_{By}))$ - Compute [z] = ( $(z_A = x_A + y_A, k_{Az} = k_{Ax} + k_{Ay}, m_{Az} = m_{Ax} + m_{Ay}),$  $(z_B = x_B + y_B, k_{Bz} = k_{Bx} + k_{By}, m_{Bz} = m_{Bx} + m_{By}), )$
- And [z] is in the right format since...  $m_{Bz} = (m_{Bz} + m_{By}) = (k_{Ax} + x_{B}\Delta_{A}) + (k_{Ay} + y_{B}\Delta_{A})$   $= (k_{Ax} + k_{Ay}) + (x_{B} + y_{B})\Delta_{A} = k_{Az} + z_{B}\Delta_{A}$





#### 1. Output Gates:

- Exchange shares and MACs
- Abort if MAC does not verify

#### 2. Input Gates:

- Get a random [r] from trusted dealer
- − r  $\leftarrow$  Open(A,[r])
- Alice sends Bob *d=x-r*,
- Compute [x]=[r]+d





- 1. Addition Gates:
  - Use linearity of representation to compute
     [z]=[x]+[y]

#### 2. Multiplication gates:

Get a random triple [a][b][c] with c=ab from



- − e ← Open([a]+[x]), d ← Open([b]+[y])
- Compute [z] = [c] + a[y] + b[x] ed

#### **Final remarks**

• Size of MACs

• Lazy MAC checks

# Size of MACs

- 1. Each party must store a mac/key pair *for each other party* 
  - − quadratic complexity! ⊗
  - SPDZ for linear complexity.
- MAC is only as hard as guessing key!
   *k* MACs in parallel give security 1/|F|<sup>k</sup>
  - In *TinyOT* F=Z<sub>2</sub>, then MACs/Keys are *k*-bit strings
  - MiniMACs for constant overhead

#### Lazy MAC Check



# Lazy MAC Check

#### 1) z ← PartialOpen(A,[z]):

- 1. Bob sends z<sub>B</sub>
- 2. Bob runs OutMAC.append(m<sub>B</sub>)
- 3. Alice runs InMAC.append( $k_A + z_B \Delta_A$ )
- 4. Alice outputs  $z=z_A+z_B$

#### 2) z ← FinalOpen(A,[z]):

- 1. Steps 1-3 as before
- 2. Bob sends u=H(OutMAC) to Alice
- 3. Alice outputs  $z=z_A+z_B$  if u=H(InMAC)
- 4. "abort" otherwise

# Recap of Part 1

- Two protocols "in the trusted dealer model"
  - One Time-Truth Table
    - Storage exp(input size) 😣
    - Communication O(input size) 😳
    - 1 round 🙂
  - (SPDZ)/BeDOZa/TinyOT online phase
    - Storage linear #number of AND gates
    - **Communication** linear #number of AND gates
    - **#rounds** = depth of the circuit
  - ...and add enough MACs to get active security

# Recap of Part 1

 To do secure computation is enough to precompute enough random multiplications!



 If no *semi-trusted party is available*, we can use cryptographic assumption (next)