Plan for the next 3 hours...

- Part 1: Secure Computation with a Trusted Dealer
- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver's trick
- MAC-then-Compute for Active Security
- Part 2: Oblivious Transfer
- OT: Definitions and Applications
- Passive Secure OT Extension
- OT Protocols from DDH (Naor-Pinkas/PVW)
- Part 3: Garbled Circuits
- GC: Definitions and Applications
- Garbling gate-by-gate: Basic and optimizations
- Active security 101: simple-cut-and choose, dual-execution

Want more?

- Cryptographic Computing - Foundations
- http://orlandi.dk/crycom
- Programming \& Theory Exercises
- Will be happy to answer questions by mail!
...also the reason why I cannot stay here longer $:$
- These slides (+ references \& pointers)
- http://orlandi.dk/ecrypt

Secure Computation

What kind of Secure Computation?

- Dishonest majority
- The adversary can corrupt up to $n-1$ participants ($n=2$).
- Static Corruptions
- The adversary chooses which party is corrupted before the protocol starts.
- Passive \& Active Corruptions
- Adversary follows the protocol vs. (aka semi-honest, honest-but-curious)
- Adversary can behave arbitrarily (aka malicious, byzantine)
- No guarantees of fairness or termination
- Security with abort

6

- Independent of $\boldsymbol{x}, \boldsymbol{y}$
- Tipically only depends on size of f
- Uses public key crypto technology (slower)

- Uses only information theoretic tools (order of magn. faster)

Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver's trick
- MAC-then-Compute for Active Security

"The simplest 2PC protocol ever"

$$
\left(r_{A}, r_{B}\right) \leftarrow D
$$

r_{B}

$f(x, y)$

"The simplest 2PC protocol ever" OTTT (Preprocessing phase)

1) Write the truth table of the function F you want to compute
y

		0	1	2	3
	0	3	2	2	2
	1	3	0	0	4
	2	1	0	0	4
	3	1	1	4	4

"The simplest 2PC protocol ever" OTTT (Preprocessing phase)
2) Pick random ($r, s)$, rotate rows and columns

$$
s=3
$$

"The simplest 2PC protocol ever" OTTT

 (Preprocessing phase)3) Secret share the truth table i.e.,

at random, and let

"The simplec" "Privacy":

inputs masked w/uniform

 random values
output $f(x, y)=T 1[u, v]+T 2[u, v]$

What about active security?

Is this cheating?

- $v=y+s+e l=(y+e l)+s=y^{\prime}+s$
- Input substitution, not cheating according to the definition!
- $M 2[u, v]+e 2$
- Changes output to $z^{\prime}=f(x, y)+e 2$
- Example: $f(x, y)=1$ iff $x=y$
$-\mathrm{e} 2=1$ the output is 1 whp
- Clearly breach of security!

Force Bob to send the right value

- Problem: Bob can send the wrong shares
- Solution: use MACs
- e.g. $\mathrm{m}=a x+b$ with $(a, b) \leftarrow F$

Abort if $\mathrm{m}^{\prime} \neq \mathrm{ax}{ }^{\prime}+\mathrm{b}$

OTTT+MAC

T2[u,v], M[u,v]

If $\left(M[u, v]=A[u, v]^{*} T 2[u, v]+B[u, v]\right)$ output $f(x, y)=T 1[u, v]+T 2[u, v]$
else abort

Statistical security vs. malicious Bob w.p. 1-1/|F|

"The simplest 2PC protocol ever" OTTT

- Optimal communication complexity ()
- Storage exponential in input size :
\rightarrow Represent function using circuit instead of truth table!

Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver's trick
- MAC-then-Compute for Active Security

Circuit based computation

Invariant

- For each wire \boldsymbol{x} in the circuit we have

$$
-[x]:=\left(x_{A}, x_{B}\right) \quad / / \text { read "x in a box" }
$$

- Where Alice holds x_{A}
- Bob holds x_{B}
- Such that $x_{A}+x_{B}=x$
- Notation overload:
- x is both the r-value and the l-value of x
- use $n(x)$ for name of x and $v(x)$ for value of x when in doubt.
- Then $[n(x)]=\left(x_{A}, x_{B}\right)$ such that $x_{A}+x_{B}=v(x)$

Circuit Evaluation (Online phase)

1) $[x] \leftarrow \operatorname{lnput}(A, x):$

- chooses random x_{B} and send it to Bob
$-\quad$ set $x_{A}=x+x_{B}$
// symmetric for Bob
Alice only sends a random bit! "Clearly" secure

2) $z \leftarrow O \operatorname{Open}(A,[z]):$
// z๘ Open([z]) if both get output

- Bob sends Z_{B}
- Alice outputs $\mathrm{z}=\mathrm{z}_{\mathrm{A}}+\mathrm{z}_{\mathrm{B}}$
// symmetric for Bob
Alice should learn z anyway! "Clearly" secure

Circuit Evaluation (Online phase)

2) $[\mathbf{z}] \leftarrow \operatorname{Add}([\mathbf{x}],[\mathbf{y}]) \quad / /$ at the end $\mathrm{z}=\mathrm{x}+\mathrm{y}$

- Alice computes $z_{A}=x_{A}+y_{A}$
- Bob computes $z_{B}=x_{B}+y_{B}$
- We write [z] = [x] + [y]

No interaction! "Clearly" secure
"for free" : only a local addition!

Circuit Evaluation (Online phase)

2a) $[\mathrm{z}] \leftarrow \operatorname{Mul}(\mathrm{a},[\mathrm{x}]) \quad / /$ at the end $\mathrm{z}=\mathrm{a}^{*} \mathrm{x}$

- Alice computes $z_{A}=a^{*} x_{A}$
- Bob computes $z_{B}=a^{*} x_{B}$

2c) $\mathbf{[z]} \leftarrow \mathbf{A d d}(\mathbf{a}, \mathbf{x} \mathbf{x} \mathbf{)} \quad / /$ at the end $\mathrm{z}=\mathrm{a}+\mathrm{x}$

- Alice computes $z_{A}=a+x_{A}$
- Bob computes $z_{B}=x_{B}$

Circuit Evaluation (Online phase)

3) Multiplication?

 How to compute [z]=[xy] ?Alice, Bob should compute
How do we compute this?

Circuit Evaluation (Online phase)

3) $[z] \leftarrow \operatorname{Mul}([x],[y]):$

1. Get $[a],[b],[c]$ with $c=a b$ from trusted dealer
2. $e=\operatorname{Open}([a]+[x])$
3. $d=O p e n([b]+[y])$

4. Compute $[z]=[c]+e[y]+d[x]$ - ed

$$
a b+(a y+x y)+(b x+x y)-(a b+a y+b x+x y)
$$

Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver's trick
- MAC-then-Compute for Active Security

Secure Computation

Active Security?

- "Privacy?"
- even a malicious Bob does not learn anything ()
- "Correctness?"
- a corrupted Bob can change his share during any "Open" (both final result or during multiplication) leading the final output to be incorrect $8:$

Problem

2) $z \leftarrow \operatorname{Open}(A,[z]):$

- Bob sends $z_{B}+e$
- Alice outputs $\mathbf{z}=z_{A}+z_{B}+e \quad / /$ error change output
distribution in way that cannot be simulated by input substition

Solution: add MACs

2) $z \leftarrow \operatorname{Open}(A,[z]):$

- Bob sends z_{B}, m_{B}
- Alice outputs
$\begin{array}{ll}\text { - } & z=z_{A}+z_{B} \\ \text { - } & \text { if } m_{B}=z_{B} \Delta_{A}+k_{A} \\ \text { abort" } & \text { otherwise }\end{array}$
- Solution: Enhance representation [x]
$-[x]=\left(\left(x_{A}, k_{A}, m_{A}\right),\left(x_{B}, k_{B}, m_{B}\right)\right)$ s.t.
$-m_{B}=x_{B} \Delta_{A}+k_{A}$ (symmetric for $\left.m_{A}\right)$
$-\Delta_{A}, \Delta_{B}$ is the same for all wires.

Linear representation

- Given
$-[x]=\left(\left(x_{A}, k_{A x}, m_{A x}\right),\left(y_{B}, k_{B x}, m_{B x}\right)\right)$
$-[y]=\left(\left(y_{A}, k_{A y}, m_{A y}\right),\left(y_{B}, k_{B y}, m_{B y}\right)\right)$
- Compute [z] = (

$$
\begin{array}{ll}
\left(z_{A}=x_{A}+y_{A},\right. & k_{A z}=k_{A x}+k_{A y}, \\
\left(z_{B}=m_{A Z}+y_{B},\right. & \left.k_{A Z}=m_{A x}+m_{A y}\right), \\
\left.k_{B y}, k_{B z}=m_{B x}+m_{B y}\right),
\end{array}
$$

- And [z] is in the right format since...

$$
\begin{aligned}
& m_{B z}=\left(m_{B z}+m_{B y}\right)=\left(k_{A x}+x_{B} \Delta_{A}\right)+\left(k_{A y}+y_{B} \Delta_{A}\right) \\
&=\left(k_{A x}+k_{A y}\right)+\left(x_{B}+y_{B}\right) \Delta_{A}=k_{A z}+z_{B} \Delta_{A}
\end{aligned}
$$

Recap

1. Output Gates:

- Exchange shares and MACs
- Abort if MAC does not verify

2. Input Gates:

- Get a random [r] from trusted dealer
$-\quad r \leftarrow$ Open(A, $[r])$
- Alice sends Bob $d=x-r$,
- Compute [x]=[r]+d

Allows simulator to extract $x^{*}=r+d^{*}$

Recap

1. Addition Gates:

- Use linearity of representation to compute

$$
[z]=[x]+[y]
$$

2. Multiplication gates:

- Get a random triple [a][b][c] with $c=a b$ from
$-\quad e \leftarrow \operatorname{Open}([a]+[x]), d \leftarrow \operatorname{Open}([b]+[y])$
- Compute $[z]=[c]+a[y]+b[x]$ - ed

Final remarks

- Size of MACs
- Lazy MAC checks

Size of MACs

1. Each party must store a mac/key pair for each other party

- quadratic complexity! ©
- SPDZ for linear complexity.

2. MAC is only as hard as guessing key! k MACs in parallel give security $\left.\mathbf{1 / | F}\right|^{k}$

- In TinyOT $\mathrm{F}=\mathrm{Z}_{2}$, then MACs/Keys are k-bit strings
- MiniMACs for constant overhead

Lazy MAC Check

Lazy MAC Check

1) $z \leftarrow \operatorname{PartialOpen}(A,[z]):$
1. Bob sends Z_{B}
2. Bob runs OutMAC.append $\left(m_{B}\right)$
3. Alice runs $\ln M A C . a p p e n d\left(k_{A}+z_{B} \Delta_{A}\right)$
4. Alice outputs $\mathrm{z}=\mathrm{z}_{\mathrm{A}}+\mathrm{z}_{\mathrm{B}}$
2) $\mathrm{z} \leftarrow$ FinalOpen $(A,[z])$:
1. Steps 1-3 as before
2. Bob sends $u=H$ (OutMAC) to Alice
3. Alice outputs $z=z_{A}+z_{B}$ if $u=H(\ln M A C)$
4.

"abort" otherwise

Recap of Part 1

- Two protocols "in the trusted dealer model"
- One Time-Truth Table
- Storage exp(input size) $)^{2}$
- Communication O(input size) ()
- 1 round (:)
- (SPDZ)/BeDOZa/TinyOT online phase
- Storage linear \#number of AND gates
- Communication linear \#number of AND gates
- \#rounds = depth of the circuit
- ...and add enough MACs to get active security

Recap of Part 1

- To do secure computation is enough to precompute enough random multiplications!

- If no semi-trusted party is available, we can use cryptographic assumption (next)

